
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

This content was downloaded by: ssivanov

IP Address: 130.83.32.25

This content was downloaded on 14/08/2015 at 15:46

Please note that terms and conditions apply.

Simulation of the Jahn–Teller–Dicke magnetic structural phase transition with trapped ions

View the table of contents for this issue, or go to the journal homepage for more

2013 J. Phys. B: At. Mol. Opt. Phys. 46 104003

(http://iopscience.iop.org/0953-4075/46/10/104003)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-4075/46/10
http://iopscience.iop.org/0953-4075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 104003 (11pp) doi:10.1088/0953-4075/46/10/104003

Simulation of the Jahn–Teller–Dicke
magnetic structural phase transition
with trapped ions
Peter A Ivanov1,2, Diego Porras3, Svetoslav S Ivanov1,4

and Ferdinand Schmidt-Kaler2

1 Department of Physics, Sofia University, James Bourchier 5 Boulevard, 1164 Sofia, Bulgaria
2 QUANTUM, Institut für Physik, Johannes Gutenberg-Universität Mainz, D-55099 Mainz, Germany
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Abstract
We study theoretically the collective E⊗e Jahn–Teller–Dicke distortion in a system of trapped
ions. In a previous work (Porras et al 2012 Phys. Rev. Lett. 108 235701) we have focused on
cooperative Jahn–Teller models consisting of an ensemble of effective spins coupled to a set of
many vibrational modes. Here, we show that under suitable conditions the spin ensemble may
interact only with a single vibrational mode in each radial direction with U(1) symmetric
couplings. Our model is exactly solvable in the thermodynamical limit and it is amenable to be
solved by exact numerical diagonalization for a moderate number of ions. We show that
trapped ions are ideally suited to study the spontaneous breaking of a continuous symmetry as
well as magnetic structural phase transitions in a mesoscopic spin–boson system.

(Some figures may appear in colour only in the online journal)

1. Introduction

Physical systems where bosonic modes interact with electronic
or pseudospin degrees of freedom reveal a rich variety
of phenomena in condensed matter and atomic physics. A
prominent example is given by Jahn–Teller (JT) models [1, 2]
which describe the interaction of electronic orbital degrees
of freedom with vibrational modes either in molecules or
solids. The JT effect is formulated as a structural instability
of molecular configurations in electronically degenerate states.
In particular, the electron–phonon coupling shifts the potential
minima of the nuclei, which leads to position reordering
and molecular distortion. Similar to molecular systems, the
properties of some crystals are also strongly affected by the
JT coupling that induces symmetry breaking and structural
phase transitions [3]. Furthermore, the strong electron–phonon
coupling in cooperative JT models is an important factor in the
description of colossal magneto-resistance in manganites and
high Tc-superconductivity [4, 5].

Atomic systems such as ultracold atoms and trapped
ions allow experimentalists to implement JT models in a
controllable way that is not possible in solid-state or molecular
setups. This is a motivation to push the current quantum
technology towards the realization of analogical quantum
simulators (AQS). The latter are controllable systems where
interactions between particles can be tuned and quantum states
can be accurately prepared and measured with high efficiency.
Recently, physical realizations of JT couplings have been
discussed in terms of two-level systems coupled to a bimodal
cavity [6] and Bose–Einstein condensates in the presence of
spatially dependent laser fields [7]. These systems pave the
way for studying quantum phenomena such as ground-state
entanglement [8, 9] and the creation of artificial non-Abelian
magnetic fields [10]. Quantum chaotic behaviour in the
energy spectrum of multi-spin lattice JT model was discussed
in [11].

Among the most promising physical systems for
implementing AQS are linear ion crystals interacting with
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Figure 1. (a) Exemplary geometry for the realization of the collective Jahn–Teller–Dicke model with a time-varying magnetic field gradient
produced by a surface–electrode trap. A linear ion crystal is oriented along the z axis. Oscillating currents in two wires W1 and W2 parallel to
the linear ion crystal are used to provide the symmetric spin–phonon coupling. (b) A magnetic structural phase transition. For spin–phonon
coupling λ � λc the equilibrium positions of the ions, zi0, are aligned along the z axis, i.e. xi0 = yi0 = 0 and the only non-zero projection of
the total collective spin operator is 〈Ĵz〉/ j = −1. Increasing λ > λc the system undergoes a magnetic structural phase transition, wherein the
radial ions’ equilibrium positions are displaced by xi0 = q0

√
2αx/ j and yi0 = q0

√
2αy/ j, accompanied by a spin ordering with 〈Ĵ2

x,y〉 �= 0.

external lasers or magnetic fields [12, 13]. The main
advantages of trapped ions are their addressability, long
coherence times and high fidelity readout. The current
available ion trapping technology allows us to explore the
physics of quantum phase transitions in complex spin systems
[14–18], interacting bosons [19–23], relativistic effects,
[24, 25] and quantum open systems [26].

In this work we propose an implementation of AQS of an
infinite range E⊗e JT model based on a trapped ion crystal.
The doublet of electronic states is replaced here by two internal
metastable states of the ions. The pair of molecular vibrational
modes is represented by the two degenerate orthogonal
center-of-mass (c.m.) modes, respectively, in the two radial
directions. We show that the U(1) symmetric JT spin–phonon
coupling can be provided by applying a magnetic field
with time-oscillating gradient, which couples the collective
spin ensemble to the two orthogonal c.m. modes [27–29],
figure 1(a). Such an oscillating magnetic field has been used
to implement experimentally a single qubit rotation and multi-
qubit quantum gates [30], which shows that our model could
be realized with the current state-of-the-art ion trap setup.
In a previous work [21] we have focused on cooperative
JT models in which all vibrational modes are coupled to
the effective spins, something that leads to the reordering of
the ion positions and the formation of a spin–phonon quasi-
condensate. In contrast, here we study the interactions between
the spin ensemble and a single vibrational mode in each radial
direction. We will use the denomination Jahn–Teller–Dicke
(JTD) model for the single-mode Hamiltonian studied here,
to distinguish it from the cooperative many-mode systems.
The JTD model is quasi-exactly solvable in the sense that the
ground state can be found exactly in the thermodynamical limit
[31], or even studied by exact numerical diagonalization with
a moderate number of ions. The experimental implementation
of the JTD model can be used for the controlled study of
quantum phenomena such as symmetry breaking, as well as to
benchmark trapped ion quantum simulators in a numerically
tractable limit.

The E⊗e JTD model possesses a continuous symmetry
associated with rotation in the plane orthogonal to the trap
axis. There is a critical spin–phonon coupling above which
the U(1) symmetry is spontaneously broken and the system
evolves into one particular ground state which does not respect
the same symmetry as the Hamiltonian. That broken symmetry

is associated with a magnetic structural phase transition at zero
temperature, where the equilibrium positions of the ions are
displaced in an arbitrary direction within the radial x–y plane,
together with the creation of macroscopic spin coherence,
see figure 1(b). We show that the radial distortion of the
ion crystal is accompanied with the creation of density of
phonon excitations and macroscopic spin coherence, which is
an analogue to the normal-to-super-radiance phase transition
in the Dicke model [32, 33].

The paper is arranged as follows: in section 2 we describe
the collective vibrational spectrum of the linear ion crystal.
We show that an oscillating magnetic field gradient could
select only one vibrational mode in each radial direction and
thus to provide the symmetric JTD spin–phonon coupling. In
section 3 we explore the spin–phonon interaction assuming a
thermodynamical limit. By using the well known technique of
the Holstein–Primakoff representation we derive an analytical
result for the amount of distortion and the spin ordering of
the system. The experimental requirements for the physical
implementation and readout of the final state of our model
are discussed in section 4. Finally, in section 5 we conclude
our findings and present further interesting phenomena to be
explored.

2. The trapped-ion E⊗e Jahn–Teller–Dicke model

2.1. Trapped-ion radial vibrational Hamiltonian

We consider a crystal of N identical ions with mass M and
charge e confined in a linear Paul trap along the z axis. Each
ion has two metastable internal levels with energy separation
ω̃0. The system is described by the Hamiltonian (β = x, y, z
and � = 1 from now on)

Ĥ0 = Ĥspin + Ĥvib,

Ĥspin =
N∑

i=1

ω̃0

2
σ z

i , Ĥvib =
∑

β

N∑
i=1

p̂2
β,i

2M
+ V̂ . (1)

The first term in Ĥ0 describes the energy of the two-level
systems with σ

β

i being the Pauli matrices for ion i. Ĥvib is
the vibrational Hamiltonian, which contains the ions’ kinetic
energy and the potential energy of the ion crystal. The latter
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consists of the effective harmonic potential and the mutual
Coulomb repulsion [35]

V̂ = M

2

∑
β

N∑
i=1

ω2
β r̂2

β,i +
N∑

i>l

e2

|�̂ri − �̂rl |
, (2)

where �̂ri is the position vector operator of ion i and ωβ

denote the trapping frequencies. In this work we consider the
symmetry condition ωx = ωy = ωr, which can be achieved
by proper adjustment of the trapping voltages or by special
design of the trap geometry [34]. For sufficiently strong radial
confinement (ωr � ωz) ions occupied equilibrium positions
�ri0 = (0, 0, zi0) along the z axis. The latter are determined by
the balance between the Coulomb repulsion and the harmonic
trapping force, which yields (∂V̂/∂�ri)�ri=�ri0 = 0. At low
temperature the ions undergo only small oscillations around
the equilibrium positions, namely

�̂ri = δr̂x,i�ex + δr̂y,i�ey + (zi0 + δr̂z,i)�ez, (3)

where δr̂β,i are the displacement operators.
The radial vibrational spectrum is essential for the

implementation of our idea. For that reason we discuss here its
main characteristics, a more complete discussion can be found,
for example in [35–37]. First we notice that a suitable length
scale is given by l3

0 = e2/(Mω2
z ). Accordingly, we define

a dimensionless equilibrium position, z′
i0 = zi0/l0. Making a

Taylor expansion of the potential (2) around z′
i0 and neglecting

δr̂z,iδr̂2
α,i, δr̂3

α,i and higher order terms, the radial vibration is
described by the Hamiltonian (α = x, y from now on)

Ĥrad =
∑

α

N∑
i=1

p̂2
α,i

2M
+ Mω2

r

2

∑
α

N∑
i,l=1

Kilδr̂α,iδr̂α,l . (4)

Note that within harmonic approximation of the potential (2)
the radial motion is decoupled from the axial motion. The
collective vibrational frequencies ωn = ωr

√
κn can found by

solving the eigenvalue problem,
N∑

l=1

Kil bα
l,n = κn bα

i,n, (5)

where bα
l,n are the normal mode eigenvectors and κn are the

corresponding eigenvalues. The matrix Kil is given by

Kil =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 −
N∑

l′ �=l

ω2
z

ω2
r

1

|z′
l0 − z′

l′0|3 , (i = l),

ω2
z

ω2
r

1

|z′
i0 − z′

l0|3 , (i �= l).

(6)

The equilibrium positions for the ions in natural units depend
on the number of ions N only, and thus, the radial vibrational
modes are governed solely by the ratio ωz/ωr.

The vibrational Hamiltonian Ĥrad can be diagonalized by
defining

δr̂α,i =
N∑

n=1

bα
i,nq0

n(â
†
α,n + âα,n),

p̂α,i = i
N∑

n=1

bα
i,n p0

n(â
†
α,n − âα,n), (7)
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Figure 2. (a) Eigenfrequencies ωn of the radial collective vibrational
spectrum for a linear ion crystal with N = 20 ions and ωz/ωr = 0.1.
The highest and second highest vibrational frequency is the ωc.m.

and the rocking mode ωroc, respectively. (b) The lowest vibrational
frequency, ωN , as a function of the number of ions for various aspect
ratios ωz/ωr = 0.2, 0.15 and 0.1. Note that for a given aspect ratio,
there is a maximum value for the number of ions above which the
frequency ωN becomes imaginary. The latter condition signals the
transition from the linear into the zigzag structural phase. The
critical N varies for different aspect ratio ωz/ωr.

with q0
n = 1/

√
2Mωn, and p0

n = √
Mωn/2. By substituting (7)

in Ĥrad we obtain a set of uncoupled collective vibrational
modes

Ĥrad =
∑

α

N∑
n=1

ωn

(
â†

α,nâα,n + 1

2

)
. (8)

Here â†
α,n and âα,n are the creation and annihilation operators

of phonon in the nth vibrational mode and direction α,
respectively.

2.2. Scaling of the vibrational modes with N

In this work we will focus on a range of parameters such
that internal states are coupled only to the c.m. mode and
we can neglect all the other vibrational modes. To understand
the validity of this approximation, it is essential to calculate
the energy splitting from the c.m. mode to the energetically
nearest vibrational mode, since that gap determines the time
scales upon which the c.m. mode can be resolved. Obviously,
the c.m. energy addressability imposes a restriction on N, since
energy levels get energetically closer for longer ion chains.

For the radial modes considered in this work, the c.m.
energy, ωc.m. is the highest one. The next nearest vibrational
energy, ωroc corresponds to the rocking mode, see figure 2(a).
The relevant energy for finding the regime of validity of the
JTD Hamiltonian is thus the difference in energy between
those radial modes, 
c.m. = ωc.m. − ωroc. Remarkably, that
difference can be exactly calculated, and it only depends on
the ratio ωz/ωr (see [35]),


c.m. = ωr − ωr

√
1 −

(
ωz

ωr

)2

. (9)

Apparently equation (9) suggests that the vibrational gap does
not depend on the number of ions N. However, for a fixed ratio
ωz/ωr, there is a maximum number of ions, Nmax, for which the
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Figure 3. The scaling of the energy gap 
c.m. with Nmax. The exact
result (black circle) is compared with equation (11) (solid line).

ion chain undergoes a structural transition into a zigzag phase
[38, 39], see figure 2(b). This effect is the main limitation for
the scalability of our proposal. We estimate first the scaling of
ωz/ωr with Nmax. For this we follow the definitions in [40] and
define βz = 2e2

/(
Mω2

z d3
0

)
, βr = e2

/(
Mω2

r d3
0

)
, where d0 is the

average distance between ions. For a value βr = βr,c ≈ 1 the
radial trapping energy becomes comparable to the Coulomb
coupling between the radial ion displacements, and we expect
the onset of the transition to a zigzag phase. Note that

βr(N) = 1

2
βz

(
ωz

ωr

)2

≈ 1

24

N2

log(6N)

(
ωz

ωr

)2

, (10)

being an approximate result for Coulomb chains [41].
Equation (10) allows us to determine Nmax by the relation
βr,c = βr(Nmax). Together with equation (9), and considering
the limit (ωz/ωr)

2 
 1, we arrive to

c.m.

ωr
≈ 12βr,c

log(6Nmax)

(Nmax)2
. (11)

That is, up to logarithmic corrections, the vibrational gap
scales like the inverse of the maximum possible number of
ions. In figure 3 we show a numerical exact calculation which
confirms that scaling with a value 12βr,c = 0.6228. To find
Nmax we have calculated the number of ions at which the
smallest vibrational energy becomes negative, which signals
the onset of the transition to a zigzag phase.

The scaling imposed by equation (11) poses severe
limitations for our proposal to be scaled up. For example,
consider a moderate chain with N = 15, which leads to

c.m. ≈ 0.013ωr. However, we note, that the limitation results
in a trade-off between the length of the chain, and the speed
of the quantum simulation, being mesoscopic systems with a
high number of entangled ions is still possible.

2.3. Jahn–Teller E⊗e spin–phonon coupling

We describe the interaction of the trapped ion spin ensemble
with the collective vibrational modes. Those interactions can
be induced either by laser dipole forces or by magnetic field
gradients. Here we focus on the latter technique since it
naturally implements symmetric couplings in the x–y plane,

and it also avoids undesired effects like high-order terms in
the Lamb–Dicke expansion and the spontaneous emission
decoherence [28, 29]. Let us assume that the ion crystal
interacts with an oscillating magnetic quadrupole of the form

�B(t; x, y) = B f (t)(�exx − �eyy). (12)

Such a field can be created in a micro-structured planar
ion trap, recently experimentally demonstrated [30], which
contains two wires parallel to the linear ion crystal
(figure 1(a)) [42]. The magnetic field affects only the radial
motion of the ion crystal and thus the motion along the z
axis can be safety neglected. We consider a time modulation
f (t) = (cos νbt + cos νrt) to control the couplings. The
magnetic dipole interaction is described by the interaction
Hamiltonian

ĤI = −
N∑

i=1

�̂μi · �B(t; δrx,i, δry,i), (13)

where �̂μi = μxσ
x
i + μyσ

y
i is the magnetic dipole moment

operator of the ion i, and we assume the condition μx = μy =
μ. To control the spin–phonon couplings we choose driving
frequencies

νb,r = (ω̃0 − ω0) ± (ωc.m. − ω). (14)

The goal is to drive spin-flip transitions with detuning ω0 as
well as blue- and red-sideband transitions of the c.m. mode
ωc.m. with detuning ±ω. The applied bichromatic magnetic
field in x–y plane, establishes Jaynes–Cummings and anti-
Jaynes-Cummings interactions, which couple the internal and
the motional states of the ions [30, 43]. The Hamiltonian in
the interaction picture with respect to Ĥ0 is given by

ĤI = −μB

2

N∑
i=1

δr̂x,i(t)
(
σ+

i eiω̃0t + σ−
i e−iω̃0t

)
f (t)

− i
μB

2

N∑
i=1

δr̂y,i(t)
(
σ+

i eiω̃0t − σ−
i e−iω̃0t

)
f (t), (15)

where σ±
i are the Pauli spin-flip operators. The displacement

operators δr̂α,i are recast in terms of collective operators by
means of equation (7) such that we can in a controlled way
choose the driving frequencies to pick the radial c.m. mode as
the only resonant one. For this, the following set of conditions
has to be satisfied,

ωn 
 ω̃0,

λ, ω, ω0 
 
c.m., (16)

where λ = −μq0B/
√

2 is the spin–phonon coupling with q0 ≡
q0

1 being the size of the c.m. wave packet. The latter conditions
ensures the approximation that any vibrational mode but the
c.m. one can be neglected in a rotating wave approximation.
Consider as an example Zeeman 40Ca+ qubits with transition
frequency ω̃0 = 30 MHz confined in a planar trap with radial
trapping frequency ωr/2π = 4 MHz, the first condition in
equation (16) is justified. Assuming crystal with N = 10 ions
the frequency splitting is approximately 
c.m./2π ≈ 103 kHz,
see table 1. With current ion-trap technology a spin–phonon
coupling of the order of λ/2π ≈ 5 kHz is achieved by magnetic
field gradient b = 35 Tm−1, which allowed the contribution
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Table 1. The values of 
c.m., λ = 5 × 10−2
c.m., 
EJTD and total
interaction time T for various Nmax. We choose ωr/2π = 4 MHz,
ω = 1.29λ (ω = ω0) and T = 5τJTD.


c.m./2π λ/2π 
EJTD/2π T
Nmax (kHz) (kHz) (kHz) (ms)

10 103.3 5.2 0.9 5.5
20 29.9 1.5 0.2 28.4
30 14.4 0.7 0.1 74.9
40 8.5 0.4 0.03 149.8

of the off-resonant terms in equation (15) to be neglected.
Under those assumptions we can approximate the interaction
Hamiltonian by

ĤI = λ√
2N

(â†
x eiωt + âx e−iωt )(Ĵ+ eiω0t + e−iω0t Ĵ−)

+ i
λ√
2N

(â†
y eiωt + ây e−iωt )(Ĵ+ eiω0t − Ĵ− e−iω0t ). (17)

Here âα and â†
α correspond to the annihilation and creation

operators of the c.m. phonon, respectively. Note that the
factor N−1/2 in (17) appears due to the excitation of the
radial c.m. modes, wherein the spin–phonon coupling scales
as bα

j,1 ∼ N−1/2 [35]. Since the ions are equally coupled with
the phonons we have introduced the collective spin operators
Ĵ+ = ∑N

i=1 σ+
i (Ĵ†

+ = Ĵ−) and Ĵz = 1/2
∑N

i=1 σ z
i , which

describe the combined ionic pseudospin of length j = N/2.
The collective spin basis is spanned by the Dicke states | j, m〉,
which are eigenvectors of Ĵ2| j, m〉 = j( j + 1)| j, m〉 and
Ĵz| j, m〉 = m| j, m〉, respectively. The Hilbert space of the total
system is spanned by the states {| j, m〉⊗ |nx, ny〉}, where |nx,y〉
is the Fock state with nx,y phonons. After performing the time-
dependent unitary transformation F̂ = eiωt(n̂x+n̂y )+iω0tĴz , such
that ĤJTD = F̂†ĤIF̂ − i�F̂†∂t F̂ , we express the Hamiltonian
(17) as

ĤJTD = ω(n̂x + n̂y) + ω0Ĵz + λ√
4 j

(Ĵ+ + Ĵ−)(â†
x + âx)

+ i
λ√
4 j

(Ĵ+ − Ĵ−)(â†
y + ây). (18)

Hence we arrive at the realization of the collective JTD
model, which describes a two-degenerate vibrational modes
coupled to the effective spin ensemble by the symmetric JT
coupling. The Hamiltonian (18) is a multi-particle extension
of the E ⊗ e model in molecular and solid-state physics. The
trapped ion realization of the JTD model allows for easy tuning
of the effective spin and phonon frequencies by adjusting
the detuning and the spin–phonon coupling via the magnetic
gradient.

It is convenient to rewrite the Hamiltonian (18) in terms
of right and left chiral operators [24]

â†
r = 1√

2
(â†

x + iâ†
y ), âl = 1√

2
(âx + iây), (19)

which can be used to express the z component of the total
angular momentum L̂z = ∑N

j=1 L̂z
j = n̂r − n̂l. Using (19), the

Hamiltonian (18) is expressed in the form

ĤJTD = ω
(
â†

r âr + â†
l âl
)+ ω0Ĵz + λ√

2 j
Ĵ+
(
â†

r + âl
)

+ λ√
2 j

Ĵ−
(
âr + â†

l

)
, (20)

Figure 4. Coupling pattern of the relevant ionic and vibrational
states | j, m〉|nr, nl〉 for j = 1. Due to the symmetries in spin–phonon
coupling and parity of the Hamiltonian (18), the quantum number
nr − nl − m is preserved and the Hilbert space is decomposed into
subspaces of positive (negative) parity. Here we show the
non-vanishing couplings (solid lines) between states with
nr − nl − m = 1 and positive parity.

which shows that in the JTD model the creation of collective
atomic excitation is accompanied by the creation (annihilation)
of right (left) quantum of angular momentum and vice
versa.

2.4. Symmetries

Due to the symmetry in the spin–phonon interaction the JTD
Hamiltonian (18) is invariant under the combined application
of a rotation in the x–y plane[

âx

ây

]
=
[

cos φ − sin φ

sin φ cos φ

] [
â′

x
â′

y

]
(21)

and a phase shift Ĵ+ → e−iφ Ĵ+. Hence, the JTD model is
U(1) invariant, with the charge Ĉ = L̂z − Ĵz being the group
generator, [Ĥ, Ĉ] = 0. This implies that the Hilbert space
is decomposed into subspaces with a well-defined quantum
number nr − nl − m, figure 4. Because the Hamiltonian
(18) is quadratic in the spin and phonon operators, it is
also invariant under the application of the parity operator
�̂ = exp[iπ(n̂r + n̂l + Ĵz + j)]. The Hilbert space of
the total system is thus additionally decomposed into two
noninteracting subspaces with an even and odd number of
total excitations [44].

2.5. Holstein–Primakoff representation

In order to study the critical behaviour of a collective JTD
model (18) in the thermodynamical limit j → ∞, we
use the Holstein–Primakoff transformation [45], whereby
the spin-N/2 degree of freedom is expressed in terms of

single mode bosonic operators, namely Ĵ+ = b̂†
√

2 j − b̂†b̂,

Ĵ− =
√

2 j − b̂†b̂b̂ and Ĵz = b̂†b̂ − j. This transformation
preserves the spin algebra and allows the JTD Hamiltonian
(18) to be converted into the Hamiltonian

5
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ĤJTD = ω(n̂x + n̂y) + ω0(b̂
†b̂ − j)

+ λ√
2

{
b̂†

√
1 − b̂†b̂

2 j
+
√

1 − b̂†b̂

2 j
b̂

}
(â†

x + âx)

+ i
λ√
2

{
b̂†

√
1 − b̂†b̂

2 j
−
√

1 − b̂†b̂

2 j
b̂

}
(â†

y + ây),

(22)

which describes three coupled bosonic field modes. This
approach is the basis for the theoretical discussion in the
following section.

3. Magnetic structural phase transition

We make a Taylor expansion of the square roots in the
Hamiltonian (22) and assume 〈b†b〉/ j 
 1, which yields

Ĥ (1)
JTD = ω(n̂x + n̂y) + ω0b̂†b̂ + λ√

2
(b̂† + b̂)(â†

x + âx)

+ i
λ√
2
(b̂† − b̂)(â†

y + ây) + E (1)

G , (23)

where E (1)

G / j = −ω0 in the ground-state energy in the limit
j → ∞. The validity of the condition 〈b†b〉/ j 
 1 will
be checked self-consistently below. We diagonalize (23) by a
Bogoliubov transformation, and get (see appendix A.1)

Ĥ (1)
JTD =

3∑
p=1

ε′
p

(
ĉ†

pĉp + 1

2

)
−
(
ω + ω0

2

)
+ E (1)

G . (24)

The eigenfrequencies ε′
p can be found by solving the

eigenvalue problem
3∑

l=1

B′
ilv

′(p)

l = ε′2
p v

′(p)

i , (25)

with the matrix

B′
il =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ω2 −λ

√
ω0ω

m+
λ

√
ω0ω

m−

−λ

√
ω0ω

m+

ω2 + ω2
0

2m+

ω2 − ω2
0

2
√

m+m−

λ

√
ω0ω

m−

ω2 − ω2
0

2
√

m+m−

ω2 + ω2
0

2m−

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (26)

where m± = (1 ± λ
√

2/ω0ω)−1. We obtain a non-negative
real ε′

p (p = 1, 2, 3) for λ �
√

ω0ω/2, which allows us to
define a critical coupling λc = √

ω0ω/2. We note that the
condition for the matrix (26) to be Hermitian holds for λ � λc.
The vacuum state |01〉 of Hamiltonian (24) is defined by the
condition ĉp |01〉 = 0.

In this phase the expectation values of the operators âα

and b̂ do not depend on the number of atoms and they grow
as λ approach λc [46]. Thus, the mean value 〈b†b〉 is an
intensive quantity, and in the thermodynamical limit we get
〈b†b〉/ j → 0, within the phase λ < λc. In that limit, the phase
is characterized with vanishing density of phonon excitations
〈â†

α âα〉/ j = 0 and collective spin pointing along the z axis,
〈Ĵz〉/ j = −1.

We may find a simple physical interpretation of the critical
spin–phonon coupling λc. Indeed, it is well known that in
the presence of spin–orbit coupling, the minima of the lower
adiabatic potential surface APS (effective nuclei potential in
the molecular physics) for λ � λc appears at the origin, while
for λ > λc APS has a sombrero shape. Increasing the spin–
phonon coupling, the energy is minimized by breaking some
spatial symmetry and thus leads to a JT distortion [2].

In order to quantify the amount of distortion and the
spin ordering in the ion crystal above the critical coupling
λc, we follow the general procedure introduced by Emary and
Brandes in [31] for the quantum Dicke model. We displace
each of the bosonic modes â†

x → â†
x + √

α∗
x , â†

y → â†
y +√

α∗
y

and b̂† → b̂†−√
γ ∗, where αx, αy and γ are generally complex

parameters in the order of j. By using the Holstein–Primakoff
representation and by substituting the displaced operators, the
Hamiltonian (22) becomes

Ĥ (2)
JTD = ω

(
â†

x âx +√
α∗

x âx + √
αxâ†

x + |αx|
)

+ω(â†
y ây +

√
α∗

y ây + √
αyâ†

y + |αy|)
+ω0(b̂

†b̂ −√
γ ∗b̂ − √

γ b̂† + |γ | − j)

+ λ√
2

√
k

2 j
(â†

x + âx +√
α∗

x

+√
αx){b̂†

√
ξ̂ +

√
ξ̂ b̂ −

√
ξ̂ (
√

γ ∗ + √
γ )}

+ i
λ√
2

√
k

2 j
(â†

y + ây +
√

α∗
y + √

αy){b̂†
√

ξ̂

−
√

ξ̂ b̂ −
√

ξ̂ (
√

γ ∗ − √
γ )}, (27)

where

k = 2 j − |γ |;
√

ξ̂ =
√

1 − b̂†b̂ − b̂†√γ − b̂
√

γ ∗

k
.

(28)

The parameters αx,y and γ can be found from the condition
that all terms linear in the bosonic field operators in equation
(27) are cancelled

√
αx = λ

ω

√
j(1 − s2) cos φ,

√
αy = λ

ω

√
j(1 − s2) sin φ,√

|γ | =
√

j(1 − s), (29)

with s = λ2
c/λ

2. The phase φ = arg(
√

γ ) remains
undetermined which is a result of the arbitrariness in the choice
of a direction in spontaneous symmetry breaking. Again,

making a Taylor expansion of
√

ξ̂ and neglect, the terms with
j in the denominator the Hamiltonian (27) can be brought to
the diagonal form (see appendix A.2)

Ĥ (2)
JTD =

3∑
p=2

ε′′
p

(
r̂†

pr̂p + 1

2

)
− ω − ω0

4s
(1 + s)

− λ2

2ω
(1 − s) + E (2)

G , (30)

6
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Figure 5. The excitation energy spectrum of the collective E⊗e JTD
model in the limit j → ∞ as a function of the spin–phonon
coupling λ with ω = ω0. For λ � λc the eigenfrequencies ε′

p are
given as a solution of equation (25). At λ = λc the system undergoes
a magnetic structural phase transition with broken U(1) symmetry.
The new eigenfrequencies ε′′

p for λ � λc are given by equation (31).

where E (2)

G

/
j = −( λ2

ω
+ ω2

0ω

4λ2

)
is the ground-state energy in the

limit j → ∞. The new excitation frequencies ε′′
p are solution

of the eigenvalue problem
3∑

l=1

B′′
ilv

′′(p)

l = ε′′2
p v

′′(p)

i , (31)

for the matrix

B′′
il =

⎡
⎣ ξ 2M− λ2√2M− ν

√
M+M−

λ2√2M− ω2 −λ2√2M+
ν
√

M+M− −λ2√2M+ ξ 2M+

⎤
⎦ , (32)

with ξ 2 = (
ω2

2 + ω2
0

2s2

)
, ν = (

ξ 2 − ω2
0

s2

)
and M± = (1 ± s),

respectively. In contrast to (25), now the frequencies ε′′
p remain

positively defined in the region λ � λc, figure 5.
The mean-value phonon number with respect to the new

vacuum state |02〉 of the Hamiltonian (30) with r̂p|02〉 = 0 is
〈n̂x〉/ j = (λ2/ω2)(1 − s2) cos2 φ and 〈n̂y〉/ j = (λ2/ω2)(1 −
s2) sin2 φ, indicating a non-zero radial phonon excitation,
figure 6. The collective displacement of the c.m. mode implies
a position reordering of the ions’ equilibrium positions in the
radial x–y plane. Indeed, from equations (3) and (7) it follows
that the new radial equilibrium positions are xi0 = q0

√
2αx/ j

and yi0 = q0
√

2αy/ j. The structural transition also is
accompanied with the ferromagnetic spin ordering,

〈
Ĵ2

x

〉/
j2 =

(1 − s2) cos2 φ,
〈
Ĵ2

y

〉/
j2 = (1 − s2) sin2 φ, respectively,

figure 7. We note that, the magnetic structural transition
breaks the continuous U(1) symmetry of the JTD model,
which reflects to the energy spectrum, namely one of the
eigenfrequencies corresponds to the gapless Goldstone mode,
ε′′

1 = 0, see figure 5.

4. Preparation and detection of the magnetic
structural phase transition

In the following we discuss the implementation of our model
in a realistic trapped ion experiment. Consider an ion crystal

0

0.5

1.0

1.5

2.0

0 0.3 0.6 0.9 1.2 1.5
Coupling λ (units of ω)

M
ea

n-
P

ho
no

n 
N

um
be

r

Figure 6. The mean-phonon number (〈n̂x〉 + 〈n̂y〉)/ j as a function of
the spin–phonon coupling λ. The numerical results for 10 (red
circles) and 20 (blue triangles) ions are plotted together with the
mean-field solution (solid line). For λ � λc the phase is
characterized with zero mean-phonon number. A position reordering
is observed for λ > λc accompanied with non-zero mean-phonon
number. The magnetic structural transition becomes sharper with
increasing N.
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Figure 7. The mean-field result for (〈Ĵ2
x 〉 + 〈Ĵ2

y 〉)/ j2 as a function of
the spin–phonon coupling λ. The numerical results for 30 (red
circles) and 40 (blue triangles) ions are compared with the
mean-field solution (solid line). A creation of macroscopic
spin-coherence is observed for λ > λc, which is an analogue to the
super-radiance phase in the Dicke model.

which consists of 40Ca+ ions with qubit states encoded at the
Zeeman S1/2 levels, |↑〉 and |↓〉. The experimental sequence
is started by initializing the ion crystal in the ground state of
the normal phase by laser cooling of the radial c.m. modes
and pumping spins to |− j〉 = | ↓↓ . . . ↓〉. The proposed
method for realization of the JTD model is based on magnetic
field interaction, such that the spectator modes could be only
Doppler cooled. This is a key advantage compared to the laser–
ion interaction, where the spin–phonon coupling would depend
on the spectator modes by the Debye–Waller factor, which is a
significant source of decoherence [47]. After the preparation of
the initial state, the coupling λ is slowly increased, relatively

7
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Figure 8. The numerical result for the energy splitting 
EJTD

between the first excited state and ground state of Hamiltonian (20)
at the critical coupling λc as a function of N for ω = ω0.

to the energy gap 
EJTD between the first excited state and
ground state. In figure 8 we show the numerical result for

EJTD calculated at the critical coupling λc as a function of
the number of atoms N. Defining τJTD = (
EJTD/2π)−1,
the adiabaticity requires T � τJTD, where T is the total
interaction time. In table 1, we list the values of T together
with other parameters for different values of N, such that all
the approximations leading to the JTD Hamiltonian, and the
adiabatic condition are satisfied.

The magnetic structural phase transition can be detected
by measuring either the radial displacement or the spin
population. Considering spin–phonon coupling λ/2π =
5 kHz at the end of the quantum simulation and direction
of spontaneous symmetry breaking φ = π/4, the equilibrium
positions are displaced in the radial x–y directions by x0 =
y0 ≈ q0. Such a structural transition can be detected by laser
induced fluorescence, which is imaged on a CCD camera.
The detection of the magnetic ordering can be performed by
measuring the expectation value of the projection operator
P̂ = |↑↑ . . . ↑〉〈↑↑ . . . ↑|. We note that because [Ĥ0, P̂] = 0,
the projection operator is not affected under the rotating frame
transformation and consequently of it the readout of the spin
states does not introduce additional error. For particular ion
species, an illumination of the crystal with resonant light
near 397 and 866 nm would provide a spin-dependent laser
fluorescence, namely all spins up emit light and appear bright
while spins down remain dark.

5. Conclusion

We have presented a proposal for the physical realization of
the collective JTD model based on a linear ion crystal. We have
shown that the JTD model exhibits a magnetic structural phase
transition in the thermodynamical limit. Beyond the critical
coupling the continuous U(1) symmetry is spontaneously
broken which leads to collective motional displacement of
the radial coordinates and creation of macroscopic spin-
coherence. The features of the magnetic structural transition

can be easily measured in the mesoscopic ion crystal by
laser induced fluorescence. All parameters can be tuned by
changing the detuning and the magnetic field gradient. In
future we will investigate the JT effects in 2D ion crystals,
which are relevant to orbital physics in solids. Furthermore,
the ion crystal also can serve as a platform for studying
non-equilibrium phenomena and effects of decoherence in
such complex many-body systems, which are computationally
intractable.
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Appendix A. Diagonalization of the mean-field
Hamiltonian

A.1. Normal phase

We start with the diagonalization of the Hamiltonian (23). It is
convenient to work in the position–momentum representation
by introducing position and momentum operators for each of
the bosonic modes,

âx =
√

ω

2
x̂ + i√

2ω
p̂x, ây = i

√
ω

2
ŷ − 1√

2ω
p̂y,

b̂ =
√

ω0

2
ẑ + i√

2ω0
p̂z, (A.1)

where the quantum oscillators have frequency ω in the x–y
plane and ω0 in the z direction. The transformation gives

Ĥ (1)
JTD = ω2

2
(x̂2 + ŷ2) + ω2

0

2
ẑ2 + 1

2

(
p̂2

x + p̂2
y + p̂2

z

)
+ λ

√
2ω0ωẑx̂ − λ

√
2

ω0ω
p̂z p̂y − e0, (A.2)

with e0 = ω0( j + 1/2) + ω. The effective Hamiltonian (A.2)
describes a system of three quantum harmonic oscillators
which are coupled through position and momentum dependent
couplings. To express (A.2) as a set of uncoupled oscillators
we need first to eliminate the momentum dependent interaction
term. To achieve that first we rotate the coordinate system along
the x axis with the matrix

Rx =

⎡
⎢⎢⎣

1 0 0

0 1√
2

1√
2

0 − 1√
2

1√
2

⎤
⎥⎥⎦ , (A.3)

such that (x̂, ŷ, ẑ)T = Rx(q̂1, q̂2, q̂3)
T and ( p̂x, p̂y, p̂z)

T =
Rx( p̂1, p̂2, p̂3)

T . The transformed Hamiltonian is given by

Ĥ (1)
JTD = 1

2

(
ω2q̂2

1 + p̂2
1

)+ 1

2

(
ε2q̂2

2 + p̂2
2

m+

)
+ 1

2

(
ε2q̂2

3 + p̂2
3

m−

)
+ λ

√
ω0ωq̂1(q̂3 − q̂2) + (ω2 − ε2)q̂2q̂3 − e0, (A.4)

8
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with ε2 = (
ω2 + ω2

0

)/
2. Hence, the momentum dependent

coupling vanishes but as a consequence two of the effective
harmonic oscillators acquire different effective masses

m+ =
(

1 + λ

√
2

ω0ω

)−1

, m− =
(

1 − λ

√
2

ω0ω

)−1

.

(A.5)

The Hamiltonian (A.4) can be rewritten in a compact form as
follows

Ĥ (1)
JTD = p̂2

1

2
+ p̂2

2

2m+
+ p̂2

3

2m−
+ 1

2

3∑
i,l=1

B(1)

il q̂iq̂l − e0. (A.6)

Here B(1)

il is (3 × 3) real and symmetric matrix, given by

B(1)

il =

⎡
⎢⎣

ω2 −λ
√

ω0ω λ
√

ω0ω

−λ
√

ω0ω ε2 ω2 − ε2

λ
√

ω0ω ω2 − ε2 ε2

⎤
⎥⎦ . (A.7)

Still, Hamiltonian (A.6) is not in the desirable normal mode
form, because the quantum oscillators have different effective
masses. To overcome this problem we normalize the position
operators q̂′

1 = q̂1, q̂′
2 = √

m+q̂2, q̂′
3 = √

m−q̂3 and
momentum operators p̂′

1 = p̂1, p̂′
2 = p̂2/

√
m+, p̂′

3 =
p̂3/

√
m−, respectively, to obtain

Ĥ (1)
JTD = 1

2

3∑
i=1

p̂′2
i + 1

2

3∑
i,l=1

B′
il q̂

′
iq̂

′
l − e0, (A.8)

where

B′
il =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ω2 −λ

√
ω0ω

m+
λ

√
ω0ω

m−

−λ

√
ω0ω

m+

ω2 + ω2
0

2m+

ω2 − ω2
0

2
√

m+m−

λ

√
ω0ω

m−

ω2 − ω2
0

2
√

m+m−

ω2 + ω2
0

2m−

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A.9)

To find the collective spin–phonon modes, we solve the
eigenvalue problem

3∑
l=1

B′
ilv

′(p)

l = ε′2
p v

′(p)

i , (A.10)

for the eigenfrequencies ε′
p and the eigenvectors �v′(p) with

p = 1, 2, 3. Finally, we introduce a new set of bosonic field
operators by the relation

q̂′
i =

3∑
p=1

v
′(p)

i√
2ε′

p

(
ĉ†

p + ĉp
)
, p̂′

i = i
3∑

p=1

√
ε′

p

2
v

′(p)

i

(
ĉ†

p − ĉp
)
,

(A.11)

and arrive at the diagonal Hamiltonian

Ĥ (1)
JTD =

3∑
p=1

ε′
p

(
ĉ†

pĉp + 1

2

)
− ω0

(
j + 1

2

)
− ω. (A.12)

A.2. Magnetic structural phase transition

In order to diagonalize Hamiltonian (27) in the limit j →
∞ we perform the following two steps. (i) Expand the
Hamiltonian (27) as a power series in 1/k and neglect the terms
in order of j in the denominator. (ii) Eliminate the terms in
(27) which are linear in the bosonic operators by the condition,
equation (29). The resulting Hamiltonian becomes

Ĥ (2)
JTD = ω(n̂x + n̂y) + ω0

2s
(1 + s)b̂†b̂ + λ

2

√
1 + s

× (â†
x + âx)(b̂

† + b̂) + i
λ

2

√
1 + s(â†

y + ây)(b̂
† − b̂)

− λ

2

1 − s√
1 + s

(eiφ b̂† + e−iφ b̂){cos φ(â†
x

+ âx) + sin φ(â†
y + ây)} + λ2

4ω

(1 − s)(3 + s)

(1 + s)

× (eiφ b̂† + e−iφ b̂)2 − ẽ0, (A.13)

with

ẽ0 = j

{
λ2

ω
+ ω2

0ω

4λ2

}
+ λ2

2ω
(1 − s). (A.14)

We can further simplify (A.13) by applying the following
transformations

âx = d̂x cos φ − d̂y sin φ,

ây = d̂x sin φ + d̂y cos φ, (A.15)

and eiφ b̂† → b̂†. Then, the Hamiltonian reads

Ĥ (2)
JTD = ω(d̂†

x d̂x + d̂†
y d̂y) + ω0

2s
(1 + s)b̂†b̂

+ λs√
1 + s

(b̂† + b̂)(d̂†
x + d̂x)

+ i
λ

2

√
1 + s(b̂† − b̂)(d̂†

y + d̂y)

+ λ2

4ω

(1 − s)(3 + s)

(1 + s)
(b̂† + b̂)2 − ẽ0. (A.16)

Following the standard procedure, we introduce the position
and momentum operators for each of the bosonic modes

d̂x = −i

√
ω

2
X̂ + 1√

2ω
P̂X , d̂y =

√
ω

2
Ŷ + i√

2ω
P̂Y ,

b̂ = −i

√
ω̃

2
Ẑ + 1√

2ω̃
P̂Z, (A.17)

with ω̃ = (ω0/2s)(1 + s). The Hamiltonian (A.16) in the
position–momentum representation is given by

Ĥ (2)
JTD = ω2

2
(X̂2 + Ŷ 2) + ω̃2

2
Ẑ2 + 1

2

(
P̂2

X + P̂2
Y

)+ P̂2
Z

2m

+ 2s

1 + s
P̂ZP̂X − λ2(1 + s)ẐŶ − ω − ω̃

2
− ẽ0,

(A.18)

with m = (1+s)2/4. It is convenient to normalize the position
and momentum operators in x and y directions as follows

√
mP̂X → P̂X ,

X̂√
m

→ X̂,

√
mP̂Y → P̂Y ,

Ŷ√
m

→ Ŷ . (A.19)

9
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Then the Hamiltonian reads

Ĥ (2)
JTD = mω2

2
(X̂2 + Ŷ 2) + ω̃2

2
Ẑ2

+ 1

2m

(
P̂2

X + P̂2
Y + P̂2

Z

)+ s

m
P̂ZP̂X − 2λ2mẐŶ

− ω − ω̃

2
− ẽ0. (A.20)

Similar as before, the diagonalization proceeds by nullifying
the momentum dependent interaction term in (A.20), which
is achieved by rotating the coordinate system along the y axis
with the matrix

Ry =

⎡
⎢⎢⎣

1√
2

0 1√
2

0 1 0

− 1√
2

0 1√
2

⎤
⎥⎥⎦ , (A.21)

such that (X̂, Ŷ , Ẑ)T = Ry(Q̂1, Q̂2, Q̂3)
T and (P̂X , P̂Y , P̂Z )T =

Ry(P̂1, P̂2, P̂3)
T . After performing the rotation we obtain

Ĥ (2)
JTD = mξ 2

2
Q̂2

1 + mω2

2
Q̂2

2 + mξ 2

2
Q̂2

3

+ P̂2
1

2m1
+ P̂2

2

2m
+ P̂2

3

2m3
+ mνQ̂1Q̂3

−
√

2mλ2Q̂2(Q̂3 − Q̂1) − ω − ω̃

2
− ẽ0, (A.22)

with ξ 2 = (
ω2

2 + ω2
0

2s2

)
and ν = (

ξ 2 − ω2
0

s2

)
, respectively. Two of

the quantum oscillators acquire new effective masses

m1 = m

M−
, m3 = m

M+
, (A.23)

with M± = (1±s). Again as before to express the Hamiltonian
(A.6) in normal mode form we normalize the position
and momentum operators, namely: Q̂′′

1 = √
m1Q̂1, Q̂′′

2 =√
mQ̂2 and Q̂′′

3 = √
m3Q̂3 and, respectively, P̂′′

1 = P̂1/
√

m1,
P̂′′

2 = P̂2/
√

m and P̂′′
3 = P̂3/

√
m3. Then the Hamiltonian

becomes

Ĥ (2)
JTD = 1

2

3∑
i=1

P̂′′2
i + 1

2

3∑
i,l=1

B′′
il Q̂

′′
i Q̂′′

l − ω − ω̃

2
− ẽ0, (A.24)

where

B′′
il =

⎡
⎢⎣

ξ 2M− λ2√2M− ν
√

M+M−
λ2√2M− ω2 −λ2√2M+
ν
√

M+M− −λ2√2M+ ξ 2M+

⎤
⎥⎦ . (A.25)

The new eigenfrequencies are obtained by solving the
eigenvalue problem,

3∑
l=1

B′′
ilv

′′(p)

l = ε′′2
p v

′′(p)

i . (A.26)

We find that one eigenvalue ε′′
1 = 0 corresponds to a free

mode. The latter is the Goldstone mode related to the breaking
of the U(1) symmetry. We may define bosonic creation r̂†

p and
annihilation r̂p operators for the nonzero energy modes ε′′

2,3 by
the relation

Q̂′′
i =

3∑
p=2

v
′′(p)

i√
2ε′′

p

(
r̂†

p + r̂p
)
, P̂′′

i = i
3∑

p=2

√
ε′′

p

2
v

′′(p)

i

(
r̂†

p − r̂p
)
.

(A.27)

Submitting (A.27) in (A.24) we obtain the following diagonal
Hamiltonian, which refers to two decoupled oscillators,

Ĥ (2)
JTD =

3∑
p=2

ε′′
p

(
r̂†

pr̂p + 1

2

)
− ω − ω0

4s
(1 + s)

− j

(
λ2

ω
+ ω2

0ω

4λ2

)
− λ2

2ω
(1 − s). (A.28)
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